THERMAL EFFICIENCY OF CROSSCURRENT DESIGN
IN MULTIZONE FLUIDIZED-BED FURNACES

V. M. Dement'ev, T. I. Kolesnik, UDC 66.046.4:536.244
A. N. Vanzha, and L. S. Bolikhova

It is shown that crosscurrent design is an efficient way of organizing heat exchange in the pre-
heating and cooling zones of multizone fluidized-bed furnaces.

We shall consider a multizone furnace with fluidized bed and evaluate the possibilities for utilization
of the heat of gases and finished product; we assume that after traversing a zone, the gas and the material
are at the same temperature, i.e., each furnace zone acts as a mixing heat exchanger [1-6].

Then following the n-th zone, the temperature of the material is

! +tn_1[1— 1 ] (1)

tn+i 1+W 1—|—W

!0 mat =

We now assume that we use a baffle to separate the given zone into two sections.
Following the first temperature, the material is at the temperature
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while following the second section (i.e., following the zone that has been divided into two sections) when
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Similarly, for division into three sections,
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In the limit, when i — o,
frmat = tnt € oy (1 —e™). (6)

The exponential relationship (6) resembles that obtained earlier for determination of temperatures in
a pneumatic conveyer, which is close to ideal-displacement equipment [7, 8] and crossflow fluidized-bed
equipment in the absence of particle mixing [7], i.e., when the number of sections goes to infinity we ap-
proach an ideal~displacement device, as we might expect.
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Fig. 1. Auxiliary nomogram for four-zone furnace
with direct-contact and crossflow —counterflow heat-
exchange systems.

From (6), we can determine the temperature of the material following the fluidized-bed zone for ideal
digsplacement of the material; from the thermal viewpoint, this corresponds to crossflow heat exchange.

Comparing (1) and (6), we see that a crossflow heat exchanger is more effective than a direct-contact
design. The efficiency is higher the larger the ratio of the water equivalents of the gas and the material.

Thus, for example, when material at t,,, = 1000°C is cooled by cold air at t; = 20°C, with W =1 and 2,
when the zone is acted in direct-contact mode, we obtain 510°C and 347°C, respectively; when the zone is
switched to crossflow operation, the final temperature of the material is 390°C and 152°C.

It should be noted that the so-called counterflow multizone fluidized-bed heat exchangers described
previously [1-5] are essentially direct-contact —counterflow devices, since a single element in such a sys-
tem, which is of the counterflow type as a whole, operates as a direct-contact heat exchanger.

Below we shall consider a crossflow —counterfiow heat exchanger, i.e., we shall look at the case in
which a single element operates as a crossflow device within an overall counterflow system.

We consider a multizone furnace; the preheating and cooling zones are separated into i sections by
baffles. There are no baffles in the fuel firing zone.

We employ the methods of [6] for the calculations. We recall that on the right-hand quadrant of the
design nomogram we construct the relationship
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We write (5) in a similar form:
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since W = Vchnam/Gc', we can solve (9) for V/G,
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We can reduce (10) to the form (7),
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TABLE 1. Comparison of Characteristics for Four- and Six-Zone
Limestone Furnaces with Fluidized Bed

| Temperature, °C
Number of 3 ™, -
Heat-exchange system V/G,m" | exit gases | material
zones /t removed
Four l Direct-contact— counterflow 149 453 335
Four Crossflow—counterflow 137 341 282
Six Direct~contact —counterflow 136 362 180
where
1
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i| [ +1 ) -1
A . \ Xn
- 1 ’ (12)
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or, in the limit, when i — o,
1
A= ———. (13)
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Similarly, we can show that for the cooling zone the specific gas flow rate under crosscurrent conditions
can be represented as
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where A is the same correction factor, found from (12) or (13). In the given case, the correction factor A
is shifted to the denominator, since the direction of heat exchange is reversed, and the gas and material
temperature are interchanged.

In this manner, we can design a multizone furnace with sectionalized fluidized beds in the preheating
and cooling zones [6] with a correction for sectionalization in the form of the coefficient A.

As an illustration, let us look at calculations for a four-zone limestone roasting furnace using a sec-
tionalized fluidized bed with two preheating zones and one cooling zone.

The initial data are
i=4t=171,,=950°, t,,,=10°C; £, ,;; =50°C;
La—i,1 = 10,5 Nm®*/Nio®; Koyt = 11,5 Nm®/Nm®;
¢, = 0.96 ki/kgdegC; ¢, = 1.46 Kl/kg degC; ¢, = ki/kg deg C;
g=1670 ki/kg;  Qb=235500 k/Nm’,
We use the results to construct an auxiliary nomogram (see Fig. 1). In the right-hand quadrant, the

temperature of the material is plotted along the axis of abscissas, while the air preheating temperature is
plotted in the left-hand quadrant.

As we see, sectionalization of the preheating and cooling zones is provided for in the graph by shifting
the curves in accordance with A.

Table 1 shows the results obtained from this nomogram for a four-zone furnace in direct-contact
—counterflow operation (with no sectionalization of the preheating and cooling zones) and for crossflow
—counterflow operation (with sectionalization). For comparison, we have also shown calculated results
for a six-zone furnace (three preheating zones and two cooling zones), with direct-contact —counterflow
operation.

As Table 1 shows, the use of crosscurrent heat exchange in the preheating and cooling zones makes
it possible either to improve the furnace thermal characteristics or, while preserving the previous charac-
teristics, to reduce the total number of furnace zones (from six to four in our case).
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NOTATION

the ratio of the water equivalents of gas and material;

are the per-hour flow rates of gas (fuel) and finished product, Nm?®/h, kg/h;
are the output of combustion products and the air consumption per Nm? of gas (fuel),
Nm3/Nm3;

are the heat capacities of the air, gas, raw material, and finished product, kd/Nm? - deg,

kd/kg - deg;

is
is
is
is
is
is
is
is
is

the fuel flow rate for the thermal process per kilogram of finished product, kJ/kg;
the coefficient for the heat lost to the ambient;

the calorific value of the gas (fuel), kJ/Nm3;

the initial temperature of the material supplied to the n~-th zone of the fluidized bed, deg;
the same, for gas;

the temperature in the n-th zone, deg;

the initial temperature of the air, deg;

the material flow-rate coefficient;

the number of sections.
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